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The preparation of unsymmetrical 2,6-dialkoxy-7-methylpurines (2), and 2- 
alkoxy-1,7-dialkyl-6-oxo-1,6-dihydropurines (5) is described. In contrast to 1 and 
2, a facile thermal lactim-lactam rearrangement from hypoxanthines 5 and 7 into 
xanthines 6 was observed. 

(Keywords: Nucleophilic heteroaromatic substitution; Thermal lactim-lactam 
rearrangement; [1,3] Sigmatropic shifts; Dialkoxy-7H-purines; DialkyL1H (or 
3 H) , 7 H-hypoxanthines; Trialkyl-7 H-xanthines) 

2,6-Dialkoxy- 7-methylpurine 

Die Darstetlung von unsymmetrischen 2,6-Dialkoxy-7-methylpurinen (2) und 
2-Alkoxy-l,7-dialkyl-6-oxo-l,6-dihydropurinen (5) wird beschrieben. Im 
Gegensatz zu den Verbindungen 1 und 2 erfolgt die thermische Lactim-Lactam- 
Umlagerung der Hypoxanthine 5 und 7 zu den Xanthinen 6 glatt. 

Introduction 

2,6-Dialkoxy-7-methylpurines 1 can serve as a source for the 
preparation of  some important  pharmacologically active 7H-xanthine 
derivatives 1-3. The lactim-lactam rearrangement of  dialkoxypurines ! 
and 21,2 seems to be a rather simple way of  transforming these compounds 
into dialkylxanthines 6. For  this purpose we have synthetized several 2,6- 
dialkoxypurines of type 1 and 2 as well as hypoxanthines 5 and have 
attempted their direct transformation into xanthines 6. 

24* 
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Results and Discussion 

Synthesis of Purines 1 and Hypoxanthines 5 

The synthesis of only a few symmetrical 2,6-dialkoxy-7-methylpurines 
(1) -based  on the reaction of 2,6-dichloro-7-methylpurine 8 with sodium 
alkoxide-has hitherto been described 1-3. We had expected that 
unsymmetrical 2,6-dialkoxy-7-methylpurines (2) could be obtained from 
2-chloro-6-alkoxy-7-methylpurines (3) and an equimolar amount of 
sodium alkoxide in alcoholic solution (Scheme 1). 
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The reaction proceeded however (at a temperature of about 60 °C) via 
an exchange of the 6-alkoxy group to yield another 2-chloro-6-alkoxy-7- 
methylpurine, in which the 2-chlorine substituent remained unaffected. At 
higher temperatures both the 6-alkoxy and 2-chlorine substituents were 
replaced by alkoxide ions with good yields, resulting in sym. 2,6-dialkoxy- 
7-methylpurines (1). 

The reactivity of the 6-alkoxy substituent suggested that 
unsymmetrical 2,6-dialkoxy-7-methylpurines (2) might be prepared using 
symmetrical derivatives as substrates (Scheme 2). 
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It has been found that at temperatures below 60 °C the unsymmetrical 
derivatives 2 were formed; when however the reaction temperature 
exceeded 60 °C the formation of symmetrical compounds 1 predominated. 
Two series of transformations of symmetrical dialkoxypurines 1 into 
unsymmetrical dialkoxypurines 2 were performed using the following 
substrates: for the first series the dimethoxy compound 1 a and sodium 
alkoxide (R=E& n~Pr, #Bu, allyl) and for the second series 
dialkoxypurines 1 b-1 e (R = Et, n-Pr, i-Bu, allyl) and sodium methoxide. 
Better yields of unsymm, dialkoxypurines 2 were obtained in the second 
series probably for steric reasons with the MeO- ion being more reactive. 
The formation of unsymm, dialkoxypurines 2 was accompanied by the 
formation of high-melting products (m. p. 360 °C, ca. 10-15% of the 
obtained dialkoxypurines). 

A comparison of the 1H-NMR spectra of 2,6-dirnethoxy-(1 a) 2-methoxy-6- 
ethoxy (2 a) and 6-methoxy-2-ethoxy-7-methylpurines (2 e) offers the possibility to 
resolve these spectra. ~-Alkoxy-protons of the 6-alkoxy substituent were found to 
be more deshielded than 2-alkoxy ones. 

Acid hydrolysis of all dialkoxypurines 1 and 2 yielded 7- 
methylxanthine. Attempts of alkaline hydrolysis failed since no formation 
of the previously reported 8 type of hypoxanthines 5 ( R = H )  was 
observed. 

2-Alkoxy-l-alkyl-7-methyl-6-oxo-l,6-dihydropurines (5) were ob- 
tained by the action of sodium alkoxide on 2-chloro-6-oxo-l-alkyl-7- 
methylpurine (4) (see Scheme 3). 
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N-1 alkylation of chlorohypoxanthine (4) was found to be the step which 
limits the effectivness of this process. Alkylation of the N- 1 position with 
dimethyl sulfate in a 50% water-methanol solution at pH-9 gave the 
dimethyl compound 4 a with a yield of up to 51%. Thus, it becomes 
possible to obtain paraxanthine, starting from theobromine via 2,6- 
dichloro-7-methylpurine (8) with a total yield of 25%, whereas the total 
yield of paraxanthine obtained in the Same way according to Ref. 5 was 
only 8.5%. 

The structures of the 2-alkoxy-hypoxanthines 4 and fi were confirmed 
by acid hydrolysis giving 1,7-dialkyl-xanthines. 

It should also be noted that the 2-chlorine substituent in hypoxanthine 
derivatives such as 6-oxo-l,6-dihydropurine (4) and 2-chloro-3,7- 
dimethyl-6-oxo-3,6-dihydropurine is more reactive toward sodium 
alkoxides than in purines 3 or 8. 

Attempts of a Lactim~Lactam Rearrangement 

It has been shown that the thermally induced lactim-lactam 
rearrangement proceeds smoothly only in the case of 2,6-dimethoxy-7- 
methylpurine (1 a) at 22 °C 1 and some allylic-type of symm. dialkoxy-7- 
methylpurines (150-160 °C) 2. If ethoxy- and propoxy-substituents were 
present, a decomposition of dialkoxy-7-methylpurines took place. Similar 
results were obtained in the case of unsymm. 2,6-dialkoxy-7- 
methylpurines 2 a, 2 b, 2 d, 2 e, 2 f and 2 h which decomposed at 220 °C to 
give alkylamines; in the reaction mixtures the expected xanthines 6 could 
be detected by TLC and ~H-NMR. 

Interesting results were found in the rearrangement of methoxy- 
allyloxypurines 2 e and 2 g: The rearrangement of 6-allyloxy-2-methoxy-7- 
methylpurine (2 e) proceeded as easily as with the 2,6-diallyloxy derivative 
(1 d) at 150-160°C with the formation of 1-allyl-3,7-dimethylxanthine 
(6 f). A mechanistic sequence in the formation of 6 f from 2 e can be 
formulated with hypoxanthine fi d as an intermediate, formed in the allylic 
hetero-Claisen rearrangement 6, proceeding as thermal [3,3] sigmatropic 
shift. The final product 6 f would then arise from fi d as a result of the 02- 
N-3 methyl-migration proceeding as a thermal [1,3] sigmatropic shift 
(Scheme 4). 

The sequence 2 e ~ 5 d-~ 6 f suggests that hypoxanthines 5 are 
transformed into xanthines 6 more easily than dialkoxypurines 1 or 2. 

This hypothesis seems to be supported by the results of the lactim- 
lactam rearrangement of hypoxanthines fib and fie proceeding (O2-N-3 
alkyl migration) already at a temperature of 160-170°C with the 
formation of trialkyxanthines 6a and 6b in yields of 50% (calc. per 
converted fi). We have however also found, that the isomeric 
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Scheme 4 
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hypoxanthine-system 7 undergoes a rearrangement to give 1-alkyltheo- 
bromines 6d, 6e (O2-N-1 alkyl migration) as facile as 5b and 5e 
(Scheme 5). 
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Taking into account the known thermal O - N  alkyl rearrangement of 2,4- 
dialkoxypyrimidines 7, 4-alkoxypyridines s or quinolines 9 and the rearrangement 
of 2,6-dimethoxy- and 2,6-diallyloxy-7-methylpurines mentioned above 1,2 one 
may conclude that the transformation ofpurines 1 a and 2 into the trialkylxanthine 
system 6 x may proceed with O 6 - N  - 1, OZ-N-3, O2-N - 1 alkyl migrations (thermal 
[-1,3]sigmatropic shifts) and O6-N-3  alkyl migration (thermal [1,5] sigmatropic 
shift). The results of the rearrangement of 2,6-diallyloxy-type purine derivatives, 
however, ought to be classified as thermal [-3,3] sigmatropic shifts only. In the case 
of 6-allyloxyguanines O6-N-3, O6-N-7 and O6-C-8 anionic pentenyl migrations 
were observed1°,11; the O6-N-3 and 06-(2-8 migrations were assumed to proceed 
via C-5 by two anionic [-3,3] sigmatropic shifts, but O 6 - N - 7  migration was an 
anionic [-3,3] one, followed by anionic [3,2] sigmatropic shifts. 

In  the course of  our  exper iments  in the case o f  2 e, 5 a, b, c, 7 a, b, and e 
O2-N-3,  O2-N-1 alkyl and  O6-N-1 allyl migra t ions  were observed,  
whereas  in the r ea r rangement  of  2 g into xanthine 6 e O6-N - 1 methyl  and  
O6-N-3 allyl migra t ions  were found.  

Consider ing all the observed types o f  O-alkyl  N-a lkyl  migrat ions,  the 
r ea r rangement  o f  unsymm.  2 ,5-dia lkoxy-7-methylpur ines  (2) will furnish 
all four  possible t r ia lkyxanthines  6x .  This  explains the p rob lems  of  
isolating pure  c o m p o u n d s  f rom the products  o f  the r ea r rangement  of  
d ia lkoxypur ines  2. 

Experimental 
The m.p.'s (uncorr.) were determined on a heated Boetius table. The IH-NMR 

spectra were recorded on a Varian Anaspect EM 360 spectrometer at 60 MHz in 
CDC13 solutions, TMS being applied as an internal standard. The mass spectra 
were taken on a LKB 9000 mass spectrometer at 15 and 70 eV and at a temp. of 60- 
100 °. TLC analyses were performed employing Merck's silica gel G and a solution 
of methanol-chloroform 1 : 1 (v/v) as the developing system, chromatograms were 
visualised in UV light or by iodine vapour. 

The substrates and standards were prepared by the reported methods: 2,6- 
dichloro-7-methylpurine 84; compounds 3a ( R ' =  Me) 1 and 3b (R = Et)5; 
compound 4 sS; 2-chloro-3,7-dimethyl-6-oxo-3,6-dihydropurine 14; compounds 7 a 
(R = Me) 14, 7b (R = Et ) -m .p .  149-151 °, 1H-NMR (6, ppm): CH2CH20 1.25 (t, 
J = 6 Hz, 3 H), CH3CH20 4.35 (q, J =  6 Hz, 2 H), N3-CH 3 3.45 (s, 3 H), N 7 - C H  3 
3.85 (s, 3H), Cs-H 7.41 (s, 1 H), obtained according to 14, as well as in the way 
presented in sec. 1, 7e (R = n-Pr) TM. N-alkyl-N', N"-dimethyl-7 H-xanthines 6: 
6a  ( R = M e ,  R '=Et )  ~2, 6b ( R = M e ,  R'=n-Pr)  15, 6e ( R = M e ,  R'=al ly l )  12, 
6 d (R = Et, R' = Me) 12, 6 e (R = n~Pr, R' = Me) 16, 6 f (R = allyl, R' = Me) 13 were 
prepared from theobromine or paraxanthine, respectively. 

1. Reaction of  2-Chloro~6~alkoxypurines 3 or 2-Chloro~l-alkyl-7~methyl-6-oxo~ 
1,6-dihydropurine 4 with Sodium Alkoxides 

Equimolar amounts (5 mmol) of 2-chloro-6-alkoxy-7-methylpurine 3 or 2- 
chloro-l-alkyl-7-methyl-6-oxo-l,6-dihydropurine 4 and sodium alkoxide in 
30 ccm of anhydrous alcohol were stirred at 60 ° for 2 h. The alcohol was then 
distilled off in a vacuum and the residue was treated with 40 ccm of water and 
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neutralized with dil. hydrochloric acid. The resultant mixture was extracted with 
chloroform (3 x 15 ccm), the extracts being dried with anhydrous sodium sulfate, 
the solvent was then vacuum-evaporated at waterbath temperature. For the results 
see Table 1. 

Table 1 

Substrate Product 

No. R' R" R'" (alcohol) No. R' R" R'" Yield % m.p. °C Ref. 

3 a Me 3 b Et 75 240-242 
3b Et 3d Me 83 215-217 

4a Me Me 5a Me Me 77 188-190 
4 a Me Et 5 b Me Et 60 150-153 
4 a Me n-Pr 5 e Me n-Pr 45 86-88 

5a: aH-NMR (6, ppm): N7-CH 3 3.42 (s, 3H); C 2 - O C H  3 3.96 (s, 3H); 
N 1 - C H  3 4.04 (s, 3H); C s - H  7.63 (s, 1H). 

MS (70eV): m/e = 194 (M +, 100%). 
5b: IH-NMR (6, ppm): C 2 - O C H 2 C H  3 1.25 (t, J =  6 Hz, 3 H); C 2 - OCHzCH 3 

4.35 (q, J =  6 Hz, 2 H); N 7 - C H  3 3.30 (s, 3 H); N 1 - C H  3 3.85 (s, 3 H); C 8 - H  7.60 
(s, 1 H). 

MS (15eV): m/e= 208 (M +, 98%), 180 (M-C2H4, 100%). 
5e: IH-NMR (c~, ppm): C2-OCH2CH2CH 3 0.90 (t, J = 6 H z ,  3H); 

C 2 -OCH2CH2CH 3 1.65 (m, J = 6 Hz, 2 H); C 2 -OCHzCH2CH 3 4.30 (t, J = 6 Hz, 
2 H); N 7 - C H  3 3.30 (s, J-~ 6 Hz, 3 H); N~ - C H  3 3.85 (s, 3 H); C a - H  7.70 (s, 1 H). 

MS (70eV): m/e = 222 (M +, 35%), 180 (M-C3H6, 100%). 
5d*: 1H-NMR (6, ppm): N v - C H  3, C 2 - O C H  3, N 1 - C H 2 C H = C H  2 

3.75-4.15 (m, 8H); N ~ - C H 2 C H = C H  2 4.25-6.1 (m, 3H); C s - H  7.55 (s, 1H). 
MS (70eV): m/e = 220 (M +, 25%), 180 (M-C3H4, 100%). 
The products resulting from the reaction performed in Carius tubes in alcohol 

solution were isolated in the same way: the reaction of compound 3 a and sodium 
ethoxide (100 °, 3 h) yielded 2,6-diethoxy-7-methylpurine 1 b (57%), the reaction of 
3 b and sodium methoxide (120 °, 2 h) yielded 2,6-dimethoxy-7-methyl-purine 1 a 
(77%). 

2. Symmetrical 2,6-DiaIkoxy-7-methylpurines 1 

Symmetrical 2,6-dialkoxy-7-methylpurines 1 were prepared from the 
dichIoro-compound 8 (40 g, 0,2 tool) and sodium alkoxide (0,42 tool) in 500 ccm of 
anhydrous alcohol by heating them in a 1 dm 3 rocking steel autoclave. After 
cooling, the solid was filtered off. The filtrate was vacuum-evaporated to dryness 
in a rotary evaporator. The residue -c rude  2,6-dialkoxy-7-methylpurine (1) - w a s  
crystallized from alcohol or xylene. The results are listed in Table 2. 

* The compound was prepared from 2-chloro-7-methyl-6-oxo-l,6- 
dihydropurine 10 retool, allyl bromide 10 mmol and sodium methoxide 20 mmol in 
anhydrous methanol. The product was isolated as presented above; yield 20%, 
m.p. 85-87 ° (from methanol). 
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Table 2 

No. R Temp. °C Time Yield % M.p. °C Ref. m.p. °C 

1 a Me 100 2h 80 198-190 1991 
1 b Et 115-120 3 h 76.5 146-148 147-1493 
l c  n-Pr 130-140 12h 77 88-90 922 
1 ti allyl 100 3 h 40 104-106 111-1122 
1 e i-Bu 135-140 18 b 46 a 93-95 

a The reaction was carried out in Carius tubes. 

le:  1H-NMR (6, ppm): -OCH2CH(CH3) 2 0.9 (d, J = 6 H z ,  12H); 
-OCH2CH(CH3) 2 2.0 (m, J =  6 Hz, 2 H); -OCH2CH(CH3) 2 4.1 (d, J = 6 Hz, 
4H); N T - C H  3 3.75 (s, 3H); C s - H  7.7 (s, 1H). 

MS (70eV): m/e = 278 (M +, 19%), 166 ( M - 2  × CH4Hs, 100%). 

3. Unsymmetric 2,6-Dialkoxy-7-methylpurines 2 

Reactions were performed as presented in sec. 1 starting from the symmetric 
2,6-dialkoxy compound 1 (5 retool) and sodium alkoxide solution prepared from 
11 mmol of sodium and 30 ccm of anhydrous alcohol. The product was crystallized 
from acetone, hexane or ether (see Table 3). 

Table 3 

No. Products M.p. °C Yield % 

R R' 
2a Me Et 183-185 75 
2b Me n-Pr 125-127 80 
2 e Me allyl 130-132 80 
2d Me i-Bu 141-143 72 
2 e Et Me 160-162 84 
2 f n-Pr Me 148-151 82 
2 g allyl Me 96-98 77 
2 h i-Bu Me 170-172 79 

2a: aH-IqMR (6, ppm): C6-OCH2CH 3 1.2 (t, J = 6 H z ,  3H); C 6 - O C H  2 
- C H  3 4.25 (q, J = 6 H z ,  2H); N v - C H  3 3.75 (s, 3H); C2OCH 3 3.85 (s, 3H); 
C 8 - H  7.7 (s, 1 H). 

MS (70eV): m/e = 208 (M +, 100%). 
2b: 1H-NMR (6, ppm): C6OCH2CH2CH 3 0.85 (t, J = 6 H z ,  3H); 

C 6 -OCH2CHzCH 3 1.65 (m, J = 6 Hz, 2 H); C6 -OCH2CHzCH3 4.25 (t, J = 6 Hz, 
2H); N v - C H  3 3.75 (s, 3H); C 2 - O C H  3 3.85 (s, 3H): C s - H  7.7 (s, 1H). 

MS (70eV): m/e= 222 (M +, 58%), 180 (M-C3H6, 100%). 
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2c: 1H-NMR (6, ppm): Nv-CH3,  C 2 - O C H  3, C 6 - O C H 2 C H = C H  2 3.75 
-3 .97  (m, 8H); C t - O C H 2 C H = C H  2 4.7-6.7 (m, 3H); C s - H  8.2 (s, 1H). 

MS (70eV): m/e = 220 (M +, 100%). 
2d: 1H-NMR (c5, ppm): C6-OCH2CH(CH3) 2 0.9 (d, J = 6 H z ,  6H); 

C 6 - OCHzCH(CH3) 2 1.95 (m, J =  J = 6 Hz, 1 H); C 6 -  OCH2CH(CH3) 2 4.1 (d, J 
= 6 Hz, 2 H); N 7 - C H  3 3.85 (s, 3 H); C 2 - O C H  3 4.0 (s, 3 H); C 8 - H  8.1 (s, 1 H). 

MS (70eV): m/e = 236 (M +, 25%), 180 (M-C4Hs, 100%). 
2e: I-NMR (6, ppm): C2-OCH2CH 3 1.2 (t, J = 6Hz, 3 H); C2-OCHzCH 3 

4.25 (q, J =  6 Hz, 21q); N - C H  3 3.75 (s, 3 H); C 6 - O C H  3 3.9 (s, 3 H); C 8 - H  7.7 (s, 
3H). 

MS t70eV): m/e = 208 (M +, 39%), 193 (M-CH 3, 100%). 
2f: H-NMR (~, ppm): C2-OCH2CH2CH 3 0.85 (t, J = 6 H z ,  3H); C 2 

-OCH2CH2CH 3 1.65 (m, J =  6Hz, 2H); C2-OCH2CH2CH 3 4.2 (t, J = 6 H z ,  
2H); N T - C H  3 3.75 (s, 3H); C 6 - O C H  3 3.95 (s, 3H); C s - H  7.7 (s, 1H). 

MS (70 eV): m/e= 222 (M +, 12%), 180 (M-C3H 8, 100%). 
2q: 1H-NMR (~, ppm): N7-CH3,  C6-0CH3,  C 2 - O C H 2 C H = C H  2 3.75- 

3.95 (m, 8 H); C2-OCH2CH2CH = CH 2 4.8-5.5 (m, 3 H), C s - H  7.75 (s, 1 H). 
MS (70eV): m/e = 220 (M +, 51%), 205 (M~CH3, 100%). 
2n: XH-NMR (~, ppm): C2-OCH2CH(CH3) 2 0.9 (d, J = 6 H z ,  6H); C 2 

-OCH2CH(CH3) 2 1.85 (m, J-= 6 Hz, 1 H); C 2 -OCH2CH(CH3) 2 4.1 (d, J = 6 Hz, 
2H); N T - C H  3 3.75 (s, 3H); C 6 - O C H  3 3.85 (s, 3H); C s - H  7.7 (s, 1 H). 

MS (70eV): m/e = 236 (M +, 48%), 180 (M-C4Hs, 100%). 

4. Synthesis of Paraxanthine 
6.5 g (55 retool) of dimethyl sulfate and 5.5 ccm (55 retool) of a 20% aqueous 

solution of potassium hydroxide were added dropwise to a solution of 2-chloro-6- 
oxo- 1,6-dihydro-7-methylpurine (50 retool) in 100 ccm of a 50% water-methanol 
solution at 30 °, with the pH value kept at 9. Afterwards stirring was continued for 
1 h. The resulting 2-chloro-6-oxo-l,6-dihydro-l,7-dimethylpurine (4a, R = Me) 
was filtered off. M.p. 224-226 °, Ref. m.p. 222-224 °5, yield 51%. 

The compound 4a  (46retool) was hydrolyzed with 96ccm of conc. 
hydrochloric acid at an oil-bath temp. of 130 ° for 1.5 hours. The resulting solution 
was vacuum-evaporated to dryness. The residue was crystallized from water, 
neutralized with conc. NH 3 aq. to give paraxanthine m.p. 290-292 ° Ref. m.p. 293- 
295 °5 (yield 56% catc. per compound 4a). 

5. Aeid-Hydrolyzed O-Dealkylation of 2,6-Dialkoxy-7-methylpurines 1, 2 and 2- 
Alkoxy-1,7~dialkyl hypoxanthines 5 a-5 e 

Compound 1, 2 or 5 (5 retool) was refluxed with 10ccm of 18% HC1 aq in an 
oil-bath at 125-130 ° for 1.5 h and then vacuum-evaporated to dryness. The residue 
was suspended in water, neutralized with conc. NH s aq. and filtered off. Yield ca. 
100% (see Table 4). 

Paraxanthine was analysed by its m.p. and by means of TLC. Heteroxanthine 
was analysed making use of TLC and also as a sodium salt 5. 

6. Attempts of Lactim-Lactam Rearrangement 
2-3 mmol of compounds 5 b, 5 e, 7 b, 7 e were heated for 1 hour at a temp. of 

165-170 °C in an oil-bath. Then the sample was dissolved in 3 ccm of ethanol and 
applied on a chromatography column (22 cm long, diameter 1 cm), filled with 11 g 
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Table 4 

No. Substrate Product Rf value 

R R' R" R'" 
1 a Me Me 
2 a Me Et heteroxanthine 0.23 

5 a Me Me 
5 b Me Et paraxanthine 0.37 
5 c Me Pr 

of silica gel (100-200mesh). The compounds were eluted with chloroform 
collecting 2 ccm fractions. The progress of the separation was controlled by means 
of the TLC method mentioned above. The fractions Nos. 9-12 consisted of pure 
xanthines 6 a, 6b, 6d, 6e, respectively. The fractions Nos. 13-28 containing 
mixtures of starting hypoxanthine 5 or 7 and xanthine 6 were collected together 
and evaporated to dryness. The content of xanthines 6 in the mixture with 
substrates was determined by means of the quantitative TLC method. In the 
analyses a 0.2 mm layer of silica gel was used. A linear correlation ( +  3 %) between 
the spot area and 3-15 #g of the amount of the applied compound 5, 6 or 7 was 
found (see Table 5). 

Table 5 

No. Substrate Products Yield ~% 
Rf Conver- No. Rf 

value sion % value 

5b 0.51 51 6a  0.58 22 
5 c 0.53 52 6 b 0.60 25 
7b 0.47 59 6d 0.61 23 
7 c 0.50 61 6 e 0.63 25 

a Calc. per used compound 5 or 7. 
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