Monatshefte für Chemie 116, 341-351 (1985)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1985

2,6-Dialkoxy-7-methylpurines

Alicja Kowalska, Andrzej Maślankiewicz*, Barbara Syrek, and Piotr Ciepliński

Department of Organic Chemistry, Institute of Chemistry and Medical Physics, Silesian School of Medicine, PL-41-200 Sosnowiec, Poland

(Received 15 December 1983. Revised 17 April 1984. Accepted 8 May 1984)

The preparation of unsymmetrical 2,6-dialkoxy-7-methylpurines (2), and 2-alkoxy-1,7-dialkyl-6-oxo-1,6-dihydropurines (5) is described. In contrast to 1 and 2, a facile thermal lactim-lactam rearrangement from hypoxanthines 5 and 7 into xanthines 6 was observed.

(Keywords: Nucleophilic heteroaromatic substitution; Thermal lactim-lactam rearrangement; [1,3] Sigmatropic shifts; Dialkoxy-7H-purines; Dialkyl-1H (or 3H), 7H-hypoxanthines; Trialkyl-7H-xanthines)

2,6-Dialkoxy-7-methylpurine

Die Darstellung von unsymmetrischen 2,6-Dialkoxy-7-methylpurinen (2) und 2-Alkoxy-1,7-dialkyl-6-oxo-1,6-dihydropurinen (5) wird beschrieben. Im Gegensatz zu den Verbindungen 1 und 2 erfolgt die thermische Lactim-Lactam-Umlagerung der Hypoxanthine 5 und 7 zu den Xanthinen 6 glatt.

Introduction

2,6-Dialkoxy-7-methylpurines 1 can serve as a source for the preparation of some important pharmacologically active 7*H*-xanthine derivatives¹⁻³. The lactim-lactam rearrangement of dialkoxypurines 1 and $2^{1,2}$ seems to be a rather simple way of transforming these compounds into dialkylxanthines 6. For this purpose we have synthetized several 2,6-dialkoxypurines of type 1 and 2 as well as hypoxanthines 5 and have attempted their direct transformation into xanthines 6.

Results and Discussion

Synthesis of Purines 1 and Hypoxanthines 5

The synthesis of only a few symmetrical 2,6-dialkoxy-7-methylpurines (1) – based on the reaction of 2,6-dichloro-7-methylpurine **8** with sodium alkoxide – has hitherto been described¹⁻³. We had expected that unsymmetrical 2,6-dialkoxy-7-methylpurines (2) could be obtained from 2-chloro-6-alkoxy-7-methylpurines (3) and an equimolar amount of sodium alkoxide in alcoholic solution (Scheme 1).

Scheme 1

The reaction proceeded however (at a temperature of about 60 °C) via an exchange of the 6-alkoxy group to yield another 2-chloro-6-alkoxy-7methylpurine, in which the 2-chlorine substituent remained unaffected. At higher temperatures both the 6-alkoxy and 2-chlorine substituents were replaced by alkoxide ions with good yields, resulting in sym. 2,6-dialkoxy-7-methylpurines (1).

The reactivity of the 6-alkoxy substituent suggested that unsymmetrical 2,6-dialkoxy-7-methylpurines (2) might be prepared using symmetrical derivatives as substrates (Scheme 2).

Scheme 2

$$\begin{array}{cccc} & & & & & & \\ & & & & & \\ & & & & & \\ R^{i} & 0 & & & \\ R^{i} & 0 & & & \\ \end{array} \xrightarrow[N]{} & & & & \\ & & & \\ R^{i} & 0 Na \\ & & & \\ & & & \\ R^{i} & 0 Na \\ & & & \\ \hline & & & \\ R^{i} & 0 Na \\ & & & \\ \hline & & & \\ R^{i} & 0 Na \\ & & \\ \hline & & & \\ R^{i} & 0 Na \\ & & \\ \hline & & & \\ R^{i} & 0 Na \\ & & \\ \hline & & & \\ R^{i} & 0 Na \\ & & \\ R^{i} & 0 Na \\ & & \\ \hline & & \\ R^{i} & 0 Na \\ & \\ R^{i} & 0 Na \\ & \\ R^{i} & 0 Na \\ & \\$$

It has been found that at temperatures below 60 °C the unsymmetrical derivatives 2 were formed; when however the reaction temperature exceeded 60 °C the formation of symmetrical compounds 1 predominated. Two series of transformations of symmetrical dialkoxypurines 1 into unsymmetrical dialkoxypurines 2 were performed using the following substrates: for the first series the dimethoxy compound 1 a and sodium alkoxide (R = Et, *n-Pr*, *i-Bu*, allyl) and for the second series dialkoxypurines 1 b–1 e (R = Et, *n-Pr*, *i-Bu*, allyl) and sodium methoxide. Better yields of unsymm. dialkoxypurines 2 were obtained in the second series probably for steric reasons with the MeO^- ion being more reactive. The formation of high-melting products (m. p. 360 °C, ca. 10–15% of the obtained dialkoxypurines).

A comparison of the ¹H-NMR spectra of 2,6-dimethoxy-(1 a) 2-methoxy-6ethoxy (2 a) and 6-methoxy-2-ethoxy-7-methylpurines (2 e) offers the possibility to resolve these spectra. α -Alkoxy-protons of the 6-alkoxy substituent were found to be more deshielded than 2-alkoxy ones.

Acid hydrolysis of all dialkoxypurines 1 and 2 yielded 7methylxanthine. Attempts of alkaline hydrolysis failed since no formation of the previously reported⁸ type of hypoxanthines 5 (R = H) was observed.

2-Alkoxy-1-alkyl-7-methyl-6-oxo-1,6-dihydropurines (5) were obtained by the action of sodium alkoxide on 2-chloro-6-oxo-1-alkyl-7-methylpurine (4) (see Scheme 3).

Scheme 3

N-1 alkylation of chlorohypoxanthine (4) was found to be the step which limits the effectivness of this process. Alkylation of the N-1 position with dimethyl sulfate in a 50% water-methanol solution at pH-9 gave the dimethyl compound 4a with a yield of up to 51%. Thus, it becomes possible to obtain paraxanthine, starting from theobromine via 2,6-dichloro-7-methylpurine (8) with a total yield of 25%, whereas the total yield of paraxanthine obtained in the same way according to Ref.⁵ was only 8.5%.

The structures of the 2-alkoxy-hypoxanthines **4** and **5** were confirmed by acid hydrolysis giving 1,7-dialkyl-xanthines.

It should also be noted that the 2-chlorine substituent in hypoxanthine derivatives such as 6-0x0-1, 6-dihydropurine (4) and 2-chloro-3,7-dimethyl-6-0x0-3,6-dihydropurine is more reactive toward sodium alkoxides than in purines 3 or 8.

Attempts of a Lactim-Lactam Rearrangement

It has been shown that the thermally induced lactim-lactam rearrangement proceeds smoothly only in the case of 2,6-dimethoxy-7-methylpurine (**1 a**) at $22 \,^{\circ}C^{1}$ and some allylic-type of symm. dialkoxy-7-methylpurines $(150-160 \,^{\circ}C)^{2}$. If ethoxy- and propoxy-substituents were present, a decomposition of dialkoxy-7-methylpurines took place. Similar results were obtained in the case of unsymm. 2,6-dialkoxy-7-methylpurines **2 a**, **2 b**, **2 d**, **2 e**, **2 f** and **2 h** which decomposed at 220 $^{\circ}C$ to give alkylamines; in the reaction mixtures the expected xanthines **6** could be detected by TLC and ¹H-NMR.

Interesting results were found in the rearrangement of methoxyallyloxypurines 2c and 2g: The rearrangement of 6-allyloxy-2-methoxy-7methylpurine (2c) proceeded as easily as with the 2,6-diallyloxy derivative (1d) at 150–160 °C with the formation of 1-allyl-3,7-dimethylxanthine (6f). A mechanistic sequence in the formation of 6f from 2c can be formulated with hypoxanthine 5d as an intermediate, formed in the allylic hetero-*Claisen* rearrangement⁶, proceeding as thermal [3,3] sigmatropic shift. The final product 6f would then arise from 5d as a result of the O²-N-3 methyl-migration proceeding as a thermal [1,3] sigmatropic shift (Scheme 4).

The sequence $2c \rightarrow 5d \rightarrow 6f$ suggests that hypoxanthines 5 are transformed into xanthines 6 more easily than dialkoxypurines 1 or 2.

This hypothesis seems to be supported by the results of the lactimlactam rearrangement of hypoxanthines 5b and 5c proceeding (O²–N-3 alkyl migration) already at a temperature of 160–170 °C with the formation of trialkyxanthines 6a and 6b in yields of 50% (calc. per converted 5). We have however also found, that the isomeric

hypoxanthine-system 7 undergoes a rearrangement to give 1-alkyltheobromines 6d, 6e (O^2-N-1 alkyl migration) as facile as 5b and 5c (Scheme 5).

Taking into account the known thermal O-N alkyl rearrangement of 2,4dialkoxypyrimidines⁷, 4-alkoxypyridines⁸ or quinolines⁹ and the rearrangement of 2,6-dimethoxy- and 2,6-diallyloxy-7-methylpurines mentioned above^{1,2} one may conclude that the transformation of purines 1 **a** and **2** into the trialkylxanthine system **6 x** may proceed with O⁶–N-1, O²–N-3, O²–N-1 alkyl migrations (thermal [1,3]sigmatropic shifts) and O⁶–N-3 alkyl migration (thermal [1,5] sigmatropic shift). The results of the rearrangement of 2,6-diallyloxy-type purine derivatives, however, ought to be classified as thermal [3,3] sigmatropic shifts only. In the case of 6-allyloxyguanines O⁶–N-3, O⁶–N-7 and O⁶–C-8 anionic pentenyl migrations were observed^{10,11}; the O⁶–N-3 and O⁶–C-8 migrations were assumed to proceed via C-5 by two anionic [3,3] sigmatropic shifts, but O⁶–N-7 migration was an anionic [3,3] one, followed by anionic [3,2] sigmatropic shifts.

In the course of our experiments in the case of 2c, 5a, b, c, 7a, b, and cO²-N-3, O²-N-1 alkyl and O⁶-N-1 allyl migrations were observed, whereas in the rearrangement of 2g into xanthine 6c O⁶-N-1 methyl and O⁶-N-3 allyl migrations were found.

Considering all the observed types of O-alkyl N-alkyl migrations, the rearrangement of unsymm. 2,5-dialkoxy-7-methylpurines (2) will furnish all four possible trialkyxanthines 6x. This explains the problems of isolating pure compounds from the products of the rearrangement of dialkoxypurines 2.

Experimental

The m.p.'s (uncorr.) were determined on a heated *Boetius* table. The ¹H-NMR spectra were recorded on a Varian Anaspect EM 360 spectrometer at 60 MHz in CDCl₃ solutions, *TMS* being applied as an internal standard. The mass spectra were taken on a LKB 9000 mass spectrometer at 15 and 70 eV and at a temp. of 60–100°. TLC analyses were performed employing Merck's silica gel G and a solution of methanol-chloroform $1:1 (\nu/\nu)$ as the developing system, chromatograms were visualised in UV light or by iodine vapour.

The substrates and standards were prepared by the reported methods: 2,6dichloro-7-methylpurine **8**⁴; compounds **3a** $(R' = Me)^1$ and **3b** $(R' = Et)^5$; compound **4s**⁵; 2-chloro-3,7-dimethyl-6-oxo-3,6-dihydropurine¹⁴; compounds **7a** $(R = Me)^{14}$, **7b** $(R = Et) - m.p. 149-151^{\circ}$, ¹H-NMR (δ, ppm) : CH₂CH₂O 1.25 (t, J = 6 Hz, 3 H), CH₃CH₂O 4.35 (q, J = 6 Hz, 2 H), N₃-CH₃ 3.45 (s, 3 H), N₇-CH₃ 3.85 (s, 3 H), C₈-H 7.41 (s, 1 H), obtained according to ¹⁴, as well as in the way presented in sec. 1, **7c** $(R = n-Pr)^{14}$. N-alkyl-N', N''-dimethyl-7 H-xanthines **6**: **6a** $(R = Me, R' = Et)^{12}$, **6b** $(R = Me, R' = n-Pr)^{15}$, **6c** $(R = Me, R' = allyl)^{12}$, **6d** $(R = Et, R' = Me)^{12}$, **6e** $(R = n-Pr, R' = Me)^{16}$, **6f** $(R = allyl, R' = Me)^{13}$ were prepared from theobromine or paraxanthine, respectively.

1. Reaction of 2-Chloro-6-alkoxypurines 3 or 2-Chloro-1-alkyl-7-methyl-6-oxo-1,6-dihydropurine 4 with Sodium Alkoxides

Equimolar amounts (5 mmol) of 2-chloro-6-alkoxy-7-methylpurine 3 or 2chloro-1-alkyl-7-methyl-6-oxo-1,6-dihydropurine 4 and sodium alkoxide in 30 ccm of anhydrous alcohol were stirred at 60° for 2 h. The alcohol was then distilled off in a vacuum and the residue was treated with 40 ccm of water and neutralized with dil. hydrochloric acid. The resultant mixture was extracted with chloroform $(3 \times 15 \text{ ccm})$, the extracts being dried with anhydrous sodium sulfate, the solvent was then vacuum-evaporated at waterbath temperature. For the results see Table 1.

Substrate				Product						
No.	R'	$R^{\prime\prime}$	R''' (alcohol)	No.	R'	<i>R''</i>	<i>R'''</i>	Yield %	m.p. °C	Ref.
3a 3b	Me Et			3 b 3 d	Et Me			75 83	240–242 215–217	1 5
4 a 4 a 4 a		Me Me Me	Me Et n-Pr	5 a 5 b 5 c		Me Me Me	Me Et n-Pr	77 60 45	188–190 150–153 86–88	

Table 1

5 a: ¹H-NMR (δ , ppm): N₇-CH₃ 3.42 (s, 3 H); C₂-OCH₃ 3.96 (s. 3 H); N₁-CH₃ 4.04 (s, 3 H); C₈-H 7.63 (s, 1 H).

MS (70 eV): $m/e = 194 (M^+, 100\%)$.

5b: ¹H-NMR (δ , ppm): C₂ – OCH₂CH₃ 1.25 (t, J = 6 Hz, 3 H); C₂ – OCH₂CH₃ 4.35 (q, J = 6 Hz, 2 H); N₇ – CH₃ 3.30 (s, 3 H); N₁ – CH₃ 3.85 (s, 3 H); C₈ – H 7.60 (s, 1 H).

MS (15 eV): $m/e = 208 (M^+, 98\%)$, 180 (M-C₂H₄, 100\%).

5 c: ¹H-NMR (δ, ppm): C₂-OCH₂CH₂CH₃ 0.90 (t, J=6 Hz, 3 H); C₂-OCH₂CH₂CH₃ 1.65 (m, J = 6 Hz, 2 H); C₂-OCH₂CH₂CH₃ 4.30 (t, J = 6 Hz, 2 H); N₇-CH₃ 3.30 (s, J = 6 Hz, 3 H); N₁-CH₃ 3.85 (s, 3 H); C₈-H 7.70 (s, 1 H). MS (70 eV): m/e = 222 (M⁺, 35%), 180 (M-C₃H₆, 100%). **5 d***: ¹H-NMR (δ, ppm): N₇-CH₃, C₂-OCH₃, N₁-CH₂CH=CH₂

5 d*: ¹H-NMR (δ , ppm): N₇-CH₃, C₂-OCH₃, N₁-CH₂CH=CH₂ 3.75-4.15 (m, 8 H); N₁-CH₂CH=CH₂ 4.25-6.1 (m, 3 H); C₈-H 7.55 (s, 1 H). MS (70 eV): m/e = 220 (M⁺, 25%), 180 (M-C₃H₄, 100%).

The products resulting from the reaction performed in *Carius* tubes in alcohol solution were isolated in the same way: the reaction of compound 3a and sodium ethoxide (100°, 3 h) yielded 2,6-diethoxy-7-methylpurine 1b (57%), the reaction of 3b and sodium methoxide (120°, 2 h) yielded 2,6-dimethoxy-7-methyl-purine 1a (77%).

2. Symmetrical 2,6-Dialkoxy-7-methylpurines 1

Symmetrical 2,6-dialkoxy-7-methylpurines 1 were prepared from the dichloro-compound 8 (40 g, 0,2 mol) and sodium alkoxide (0,42 mol) in 500 ccm of anhydrous alcohol by heating them in a 1 dm³ rocking steel autoclave. After cooling, the solid was filtered off. The filtrate was vacuum-evaporated to dryness in a rotary evaporator. The residue – crude 2,6-dialkoxy-7-methylpurine (1) – was crystallized from alcohol or xylene. The results are listed in Table 2.

^{*} The compound was prepared from 2-chloro-7-methyl-6-oxo-1,6dihydropurine 10 mmol, allyl bromide 10 mmol and sodium methoxide 20 mmol in anhydrous methanol. The product was isolated as presented above; yield 20%, m.p. 85–87° (from methanol).

No.	R	Temp. °C	Time	Yield %	M.p. °C	Ref. m.p. °C
1 a	Me	100	2 h	80	198–190	199 ¹
1 b	Et	115-120	3 h	76.5	146148	147-149 ³
1 c	n-Pr	130-140	12 h	77	88- 9 0	92 ²
1 d	allyl	100	3 h	40	104-106	$111 - 112^{2}$
1 e	i-Bu	135–140	18 h	46ª	93 -9 5	

Table 2

^a The reaction was carried out in *Carius* tubes.

1e: ¹H-NMR (δ , ppm): -OCH₂CH(CH₃)₂ 0.9 (d, J = 6 Hz, 12 H); -OCH₂CH(CH₃)₂ 2.0 (m, J = 6 Hz, 2 H); -OCH₂CH(CH₃)₂ 4.1 (d, J = 6 Hz, 4 H); $N_7^2 - CH_3 3.75$ (s, 3 H); $C_8 - H 7.7$ (s, 1 H). MS (70 eV): $m/e = 278 (M^+, 19\%), 166 (M - 2 \times CH_4H_8, 100\%).$

3. Unsymmetric 2,6-Dialkoxy-7-methylpurines 2

Reactions were performed as presented in sec. 1 starting from the symmetric 2,6-dialkoxy compound 1 (5 mmol) and sodium alkoxide solution prepared from 11 mmol of sodium and 30 ccm of anhydrous alcohol. The product was crystallized from acetone, hexane or ether (see Table 3).

No.	Products		M.p. °C	Yield %	
	R	R'			
2 a	Me	Et	183-185	75	
2 b	Me	n-Pr	125-127	80	
2 c	Me	allyl	130-132	80	
2 d	Me	i-Šu	141-143	72	
2 e	Et	Me	160-162	84	
2 f	n-Pr	Me	148-151	82	
2 g	allyl	Me	96-98	77	
2 h	i-Šu	Me	170-172	79	

Table 3

2 a: ¹H-ŃMR (δ , ppm): C₆-OCH₂CH₃ 1.2 (t, J = 6 Hz, 3 H); C₆-OCH₂ -CH₃ 4.25 (q, J = 6 Hz, 2 H); N₇-CH₃ 3.75 (s, 3 H); C₂OCH₃ 3.85 (s, 3 H); $C_8 - H 7.7 (s, 1 H).$

MS (70 eV): $m/e = 208 (M^+, 100\%)$. **2 b**: ¹H-NMR (δ , ppm): C₆OCH₂CH₂CH₃ 0.85 (t, J = 6 Hz, 3 H); C₆-OCH₂CH₂CH₃ 1.65 (m, J = 6 Hz, 2 H); C₆-OCH₂CH₂CH₃ 4.25 (t, J = 6 Hz, 3 H); 2 H); N₇-CH₃ 3.75 (s, 3 H); C₂-OCH₃ 3.85 (s, 3 H): C₈-H 7.7 (s, 1 H). MS (70 eV): $m/e = 222 (M^+, 58\%)$, 180 (M-C₃H₆, 100%).

2 c: ¹H-NMR (δ , ppm): N₇-CH₃, C₂-OCH₃, C₆-OCH₂CH=CH₂ 3.75 $-3.97 \text{ (m, 8 H)}; C_6 - OCH_2CH = CH_2 4.7-6.7 \text{ (m, 3 H)}; C_8 - H \tilde{8}.2 \text{ (s, 1 H)}.$

MS (70 eV): $m/e = 220 (M^+, 100\%)$. **2 d**: ¹H-NMR (δ , ppm): C₆-OCH₂CH(CH₃)₂ 0.9 (d, J = 6 Hz, 6H); C₆-OCH₂CH(CH₃)₂ 1.95 (m, J = J = 6 Hz, 1H); C₆-OCH₂CH(CH₃)₂ 4.1 (d, J= 6 Hz, 2 H); $\dot{N}_7 - CH_3 = 3.85$ (s, 3 H); $C_2 - OCH_3 = 4.0$ (s, 3 H); $C_8 - H = 8.1$ (s, 1 H). MS (70 eV): $m/e = 236 (M^+, 25\%)$, 180 (M-C₄H₈, 100%).

2 e: ¹-NMŔ (δ , ppm): $\hat{C}_2 - \hat{OCH}_2\hat{CH}_3$ 1.2 (t, $J = \hat{6}Hz$, 3 \hat{H}); $C_2 - OCH_2CH_3$ 4.25 (q, $J = \hat{6}Hz$, 2 \hat{H}); N - CH₃ 3.75 (s, 3 \hat{H}); $C_6 - OCH_3$ 3.9 (s, 3 \hat{H}); $C_8 - H$ 7.7 (s, 3H).

MS (70 eV): $m/e = 208 (M^+, 39\%), 193 (M-CH_3, 100\%).$

2f: ¹H-NMR (δ , ppm): C₂-OCH₂CH₂CH₃ 0.85 (t, J = 6 Hz, 3 H); C₂ $-OCH_2CH_2CH_3$ 1.65 (m, J = 6 Hz, 2 H); $C_2 - OCH_2CH_2CH_3$ 4.2 (t, J = 6 Hz, 2 H); $N_7 - CH_3$ 3.75 (s, 3 H); $C_6 - OCH_3$ 3.95 (s, 3 H); $C_8 - H$ 7.7 (s, 1 H).

MS (70 eV): m/e = 222 (M^+ , 12%), 180 (M-C₃H₈, 100%). **2 q**: ¹H-NMR (δ , ppm): N₇-CH₃, C₆-OCH₃, C₂-OCH₂CH=CH₂ 3.75-3.95 (m, 8 H); $C_2 - OCH_2CH_2CH = CH_2$ 4.8–5.5 (m, 3 H), $C_8 - H$ 7.75 (s, 1 H). $MS (70 \text{ eV}): m/e = 220 (M^+, 51\%), 205 (M-CH_3, 100\%).$

2 n: ¹H-NMR (δ , ppm): C₂-OCH₂CH(CH₃)₂ 0.9 (d, J=6Hz, 6H); C₂ $-OCH_2CH(CH_3)_2$ 1.85 (m, J = 6 Hz, 1 H); $C_2 - OCH_2CH(CH_3)_2$ 4.1 (d, J = 6 Hz, 2 H); $N_7 - CH_3 3.75$ (s, 3 H); $C_6 - OCH_3 3.85$ (s, 3 H); $C_8 - H 7.7$ (s, 1 H). MS (70 eV): $m/e = 236 (M^+, 48\%)$, 180 ($M - C_4H_8$, 100%).

4. Synthesis of Paraxanthine

6.5 g (55 mmol) of dimethyl sulfate and 5.5 ccm (55 mmol) of a 20% aqueous solution of potassium hydroxide were added dropwise to a solution of 2-chloro-6oxo-1,6-dihydro-7-methylpurine (50 mmol) in 100 ccm of a 50% water-methanol solution at 30° , with the pH value kept at 9. Afterwards stirring was continued for 1 h. The resulting 2-chloro-6-oxo-1,6-dihydro-1,7-dimethylpurine (4a, R = Me) was filtered off. M.p. 224-226°, Ref. m.p. 222-224°5, yield 51%.

The compound 4a (46 mmol) was hydrolyzed with 96 ccm of conc. hydrochloric acid at an oil-bath temp. of 130° for 1.5 hours. The resulting solution was vacuum-evaporated to dryness. The residue was crystallized from water, neutralized with conc. NH₃ aq. to give paraxanthine m.p. 290-292° Ref. m.p. 293- $295^{\circ 5}$ (yield 56% calc. per compound **4***a*).

5. Acid-Hydrolyzed O-Dealkylation of 2,6-Dialkoxy-7-methylpurines 1. 2 and 2-Alkoxy-1,7-dialkyl hypoxanthines 5a-5c

Compound 1, 2 or 5 (5 mmol) was refluxed with 10 ccm of 18% HCl aq in an oil-bath at 125–130° for 1.5 h and then vacuum-evaporated to dryness. The residue was suspended in water, neutralized with conc. NH₃ aq. and filtered off. Yield ca. 100% (see Table 4).

Paraxanthine was analysed by its m.p. and by means of TLC. Heteroxanthine was analysed making use of TLC and also as a sodium salt⁵.

6. Attempts of Lactim-Lactam Rearrangement

2-3 mmol of compounds 5b, 5c, 7b, 7c were heated for 1 hour at a temp. of 165-170 °C in an oil-bath. Then the sample was dissolved in 3 ccm of ethanol and applied on a chromatography column (22 cm long, diameter 1 cm), filled with 11 g

No.		Substrate			Product	R_f value
1 a 2 a	R Me Me	R' Me Et	R″	<i>R'''</i>	heteroxanthine	0.23
5 a 5 b 5 c			Me Me Me	Me Et Pr	paraxanthine	0.37

of silica gel (100-200 mesh). The compounds were eluted with chloroform collecting 2 ccm fractions. The progress of the separation was controlled by means of the TLC method mentioned above. The fractions Nos. 9–12 consisted of pure xanthines **6a**, **6b**, **6d**, **6e**, respectively. The fractions Nos. 13–28 containing mixtures of starting hypoxanthine **5** or **7** and xanthine **6** were collected together and evaporated to dryness. The content of xanthines **6** in the mixture with substrates was determined by means of the quantitative TLC method. In the analyses a 0.2 mm layer of silica gel was used. A linear correlation (\pm 3%) between the spot area and 3–15 μ g of the amount of the applied compound **5**, **6** or **7** was found (see Table 5).

Table 5

No.	Subs	strate	No.	Products R_f value	Yield ^a %
	<i>R_f</i> value	Conver- sion %			
5 b	0.51	51	6 a	0.58	22
5 c	0.53	52	6 b	0.60	25
7 b	0.47	59	6 d	0.61	23
7 c	0.50	61	6 e	0.63	25

^a Calc. per used compound 5 or 7.

References

- ¹ Bergman E., Heimhold H., J. Chem. Soc. 1935, 955.
- ² ibid. **1935**, 1365.
- ³ Nikolaeva L. A., Ebed M. Ya., Golovchinskaya E. S., Sintez Prirodn, Soedin, ikh Analogov i Fragmentov, Akad. Nauk. SSSR, Otd. Obshch. i Tekhn. Khim. 1965, 245; C. A. 65, 7178 e.
- ⁴ Gutorov L. A., Golovchinskaya E. S., Khim. Pharm. Zh. 5, 27 (1973).
- ⁵ Fischer E., Ber. **30**, 2400 (1897).
- ⁶ Thyagarajan B. S., Adv. Heterocycl. Chem. 8, 143 (1967).
- ⁷ Barlin G. B., Brown D. J., Topics in Heterocyclic Chemistry, Chapter 5. New York-London-Sydney-Toronto: Wiley-Interscience. 1969.
- ⁸ Haitinger L., Lieben A., Monatsh. Chem. 6, 320 (1885).

Table 4

- ⁹ Meyer H., Monatsh. Chem. 27, 258 (1906).
 ¹⁰ Leonard N. J., Frihart C. R., J. Amer. Chem. Soc. 96, 5894 (1974).
 ¹¹ Holmes B. N., Leonard N. J., J. Org. Chem. 41, 568 (1976).

- ¹² Blicke F. F., Godt H. C. jr., J. Amer. Chem. Soc. 76, 3653 (1954).
 ¹³ von Braun J., Müller E., Ber. 50, 292 (1917).
 ¹⁴ Ovcharova J. M., Nikolaeva L. A., Golovchinskaya E. S., Khim. Farm. Zh. 2, 18 (1968). ¹⁵ van der Slooten, Ar. 235, 471; C. 1897, I, 284.
- ¹⁶ ibid., Ar. 235, 487; C. 1897, I, 284.